consoGlobe
  • Catégorie:Développement durable
  • Catégorie:Habitat écologique
  • Catégorie:Environnement
  • Catégorie:Commerce équitable
  • Catégorie:Mode éthique
  • Catégorie:Energies renouvelables
  • Catégorie:Biocarburant et transport
  • Catégorie:Commerce équitable
  • Catégorie:Eco-tourisme
  • Catégorie:Cosmétique bio
  • Catégorie:Alimentation bio
  • Catégorie:Recyclage
  • Catégorie:Composants et ingrédients
  • Catégorie:Consommation Durable
  • Catégorie:Puériculture
  • Catégorie:Jardinage écologique
Biomimétisme

Biomimétisme

Un article de Encyclo-ecolo.com.

(Différences entre les versions)
Ligne 5 : Ligne 5 :
<H2> Le biomimétisme </H2>
<H2> Le biomimétisme </H2>
-
Le biomimétisme est une discipline révolutionnaire.
+
Le biomimétisme est une discipline révolutionnaire. Le biomimétisme investit toujours de nouveaux champs d'application étonnants.
Le biomimétisme est une approche scientifique révolutionnaire qui analyse les meilleures idées de la nature — depuis les filaments collants de la moule, les coques en « verre » de certaines algues unicellulaires, l'efficacité énergétique de la photosynthèse, la solidité du corail, la résistance des fils de soie de l'araignée — pour les adapter au service de l'homme.
Le biomimétisme est une approche scientifique révolutionnaire qui analyse les meilleures idées de la nature — depuis les filaments collants de la moule, les coques en « verre » de certaines algues unicellulaires, l'efficacité énergétique de la photosynthèse, la solidité du corail, la résistance des fils de soie de l'araignée — pour les adapter au service de l'homme.
Ligne 12 : Ligne 12 :
<H3> Exemples de biomimétisme</H3>
<H3> Exemples de biomimétisme</H3>
-
* Les coques des diatomées ont inspiré les microsphères de verre encapsulant des molécules thérapeuthiques.
 
-
* Dans les profondeurs de l'océan Indien, un escargot a imaginé une parade pour se protéger des prédateurs.
+
* Un '''revêtement''' antibactérien, mais non toxiques, simulant la''' peau de requin''' développé par la société américaine Sharklet
-
evêtement antibactérien, mais non toxiques, simulant la peau de requin développé par la société américaine Sharklet
+
-
* Les pales d'éoliennes inspirées des nageoires de baleines, dont les irrégularités réduisent les turbulences. Idem pour les hydroliennes, qui produisent de l’électricité avec les courants sous-marins. L’approche classique fonctionne avec des hélices. Mais les Australiens ont inventé un système inspiré de la queue de requin, qui a fait ses preuves, depuis 200 millions d’années, pour ne pas être « en turbulence », mais uniquement « en flux laminaire ».
+
* Saint Gobain met au point un '''revêtement de verre''' inspiré de la '''feuille de lotus''', verre nanostructuré qui ne mouille pas mais assez solide pour faire un pare-brise
-
* Saint Gobain met au point un revêtement de verre inspiré de la feuille de lotus, verre nanostructuré qui ne mouille pas mais assez solide pour faire un pare-brise
+
* Les''' coques des diatomées''' ont inspiré les microsphères de verre encapsulant des molécules thérapeuthiques. Les '''diatomées''' ont appris à Arkema à reproduire à température ambiante la réaction de polymérisation à l'origine de la frustule, qui est la coque protectrice et transparente des diatomées qui se fabrique à température ambiante.
-
* Les diatomées ont appris à Arkema à reproduire à température ambiante la réaction de polymérisation à l'origine de la frustule, qui est la coque protectrice et transparente des diatomées qui se fabrique à température ambiante.
+
* Les''' fabricants de colle''' s'inspirent de la capacité de la '''moule''' à synthétiser des filaments collants dans l'eau de mer. L'objectif est d'arriver à fabriquer des colles fonctionnant en milieu humide et qui donc servirait en médecine.
-
* Les fabricants de colle s'inspirent de la capacité de la moule à synthétiser des filaments collants dans l'eau de mer. L'objectif est d'arriver à fabriquer des colles fonctionnant en milieu humide et qui donc servirait en médecine.
+
* La fabrication du '''corail''' qui synthétise du carbonate de calcium, magnésium et carbonate de l'eau de mer en utilisant les ions présents dans l'eau de mer pour faire un cristal carboné et dont le squelette résiste de 12 à 80 megapascals pendant jusque 800 ans, inspire l''''industrie du béton'''. pour élaborer un béton résistant à des pressions de 60 megapascals pendant une centaine d'année. L'industrie du béton 'Calera en Californie) émet 5 à 10 % du CO2 anthropique.
-
* La fabrication du corail qui synthétise du carbonate de calcium, magnésium et carbonate de l'eau de mer en utilisant les ions présents dans l'eau de mer pour faire un cristal carboné et dont le squelette résiste de 12 à 80 megapascals pendant jusque 800 ans, inspire l'industrie du béton. pour élaborer un béton résistant à des pressions de 60 megapascals pendant une centaine d'année. L'industrie du béton 'Calera en Californie) émet 5 à 10 % du CO2 anthropique.
+
* Les fabricants de '''peau artificielle''' s'inspire de la similitude de comportement entre la membrane protectrice des algues et notre peau, entre leur mode de vie et le nôtre. Cette similitude permet une assimilation parfaite des actifs marins,de trouver des solutions efficaces aux principaux problèmes esthétique (déshydratation, agressions extérieures, excès de graisses, perte d’élasticité…)
-
* Les fabricants de peau artificielle s'inspire de la similitude de comportement entre la membrane protectrice des algues et notre peau, entre leur mode de vie et le nôtre. Cette similitude permet une assimilation parfaite des actifs marins,de trouver des solutions efficaces aux principaux problèmes esthétique (déshydratation, agressions extérieures, excès de graisses, perte d’élasticité…)
+
* La peau de requin : après les '''combinaisons de natation''' imitant la peau de requin, on met au point des surfaces artificielles aux capacités hydrophobes et autonettoyantes.
-
* Exemple avec Phytomer et les algues : la Laminaria digitata est une algue brune composée de longues lanières similaires à des doigts d'où son nom « digitata ». Elle mesure 1 m à 1 m 50, mais sa taille peut atteindre 4 m. Elle se développe en Atlantique nord, et sur certaines côtes africaines. Les scientifiques PHYTOMER ont découvert que cette algue possède une enveloppe à la composition proche de celle de notre épiderme. Elle est constituée d'un polysaccharide (sucre marin), d'acides aminés, de minéraux et d'oligo-éléments, constituants essentiels du NMF (Natural Moisturizing Factors).
+
'''Les algues :'''
 +
*De très nombreux secteurs industriels ne pourraient se passer des phycocolloïdes ou hydrocolloïdes, des extraits d’algues au pouvoir épaississant, gélifiant et stabilisant irremplaçable. Capable de retenir jusqu'à 140 fois son propre volume d'eau, l'acide alginique, tiré d''''algues brunes''', est indispensable à l'industrie textile et alimentaire. Le pouvoir gélifiant des agars, issus d'algues rouges, est mis à profit dans toutes sortes de préparations industrielles telles que confiseries et sauces. Quant aux carraghénanes, eux aussi tirés d'algues rouges, leur principal débouché est la fabrication de desserts lactés.
 +
 
 +
*Exemple avec Phytomer et les algues : la '''Laminaria digitata''' est une algue brune composée de longues lanières similaires à des doigts d'où son nom « digitata ». Elle mesure 1 m à 1 m 50, mais sa taille peut atteindre 4 m. Elle se développe en Atlantique nord, et sur certaines côtes africaines. Les scientifiques PHYTOMER ont découvert que cette algue possède une enveloppe à la composition proche de celle de notre épiderme. Elle est constituée d'un polysaccharide (sucre marin), d'acides aminés, de minéraux et d'oligo-éléments, constituants essentiels du NMF (Natural Moisturizing Factors).
En suivant le principe du biomimétisme marin, les scientifiques PHYTOMER utilisent des extraits d'enveloppe algale de Laminaria digitata, baptisés Phéohydrane. Ils permettent de restructurer le film hydrolipidique et d'améliorer la fixation de l'eau dans l'épiderme. Extrait de cyanophycée (micro-algue bleue) possède un système de protection face au vieillissement identique à celui de la peau (Biomimétisme marin)
En suivant le principe du biomimétisme marin, les scientifiques PHYTOMER utilisent des extraits d'enveloppe algale de Laminaria digitata, baptisés Phéohydrane. Ils permettent de restructurer le film hydrolipidique et d'améliorer la fixation de l'eau dans l'épiderme. Extrait de cyanophycée (micro-algue bleue) possède un système de protection face au vieillissement identique à celui de la peau (Biomimétisme marin)
-
* Les blindages militaires en céramique en carbure de silicium sont inspirés des mollusques nacriers dont les coquilles, formées à température et pression, ambiantes, nt une structure en couches superposées qui les rend 1000 fois plus résistant que son constistuant principal, le carbonate de calcium, assez fragile. Les nacres des coquilles sont donc constituées en briques et sous-briques répartis en couches séparées par un ciment organique, et dans une organisation globale quasi fractale très complexe.
+
* Les '''blindages militaires''' en céramique en carbure de silicium sont inspirés des '''mollusques''' nacriers dont les coquilles, formées à température et pression, ambiantes, ont une structure en couches superposées qui les rend 1000 fois plus résistant que son constistuant principal, le carbonate de calcium, assez fragile. Les nacres des coquilles sont donc constituées en briques et sous-briques répartis en couches séparées par un ciment organique, et dans une organisation globale quasi fractale très complexe.
-
* Les architectes et les éponges : Avec ses 300 mètres, la Pearl River Tower actuellement en construction en Chine deviendra peut-être le premier gratte-ciel produisant plus d’énergie qu’il n’en consomme. Après avoir étudié la manière dont les éponges absorbent au mieux l’énergie disponible dans leur environnement au lieu de la renvoyer, Adrian Smith du cabinet géant S.O.M. de Chicago a intégré dans la tour non seulement des collecteurs d’eau de pluie et des capteurs solaires, mais également des turbines éoliennes placées au milieu de la façade.
+
* Autre exemple de biomimétisme pour l'armée : dans les profondeurs de l'océan Indien, un '''escargot''' a imaginé une parade pour se protéger des prédateurs.
-
* L'ours polaire : la fourrure de l’ours polaire et sa capacité à réguler les échanges de chaleur se retrouvent dans le Singapore Arts Centre. Sa surface, réalisée par les ingénieurs d’Atelier One, est recouverte de losanges en aluminium qui jouent le rôle des poils de la fourrure. Leur orientation est contrôlée par des capteurs de lumière photoélectriques. Par mauvais temps, les losanges s’ouvrent pour laisser passer la lumière directe du soleil et chauffer le bâtiment. En cas d’ensoleillement, les losanges se referment afin de réduire le rayonnement solaire direct tout en laissant passer suffisamment de lumière indirecte, qui arrive à l’intérieur en se réfléchissant sur la surface en aluminium des losanges. Le résultat est un étonnant bâtiment à la forme arrondie qui ressemble davantage à la carapace du tatou qu’à un ours polaire
+
* '''Les architectes et les éponges''' : Avec ses 300 mètres, la Pearl River Tower actuellement en construction en Chine deviendra peut-être le premier gratte-ciel produisant plus d’énergie qu’il n’en consomme. Après avoir étudié la manière dont les éponges absorbent au mieux l’énergie disponible dans leur environnement au lieu de la renvoyer, Adrian Smith du cabinet géant S.O.M. de Chicago a intégré dans la tour non seulement des collecteurs d’eau de pluie et des capteurs solaires, mais également des turbines éoliennes placées au milieu de la façade.
 +
* '''L'ours polaire''' : la fourrure de l’ours polaire et sa capacité à réguler les échanges de chaleur se retrouvent dans le Singapore Arts Centre. Sa surface, réalisée par les ingénieurs d’Atelier One, est recouverte de losanges en aluminium qui jouent le rôle des poils de la fourrure. Leur orientation est contrôlée par des capteurs de lumière photoélectriques. Par mauvais temps, les losanges s’ouvrent pour laisser passer la lumière directe du soleil et chauffer le bâtiment. En cas d’ensoleillement, les losanges se referment afin de réduire le rayonnement solaire direct tout en laissant passer suffisamment de lumière indirecte, qui arrive à l’intérieur en se réfléchissant sur la surface en aluminium des losanges. Le résultat est un étonnant bâtiment à la forme arrondie qui ressemble davantage à la carapace du tatou qu’à un ours polaire.
-
* TORONTO (Canada) 07/03/2008 - L'avènement des éoliennes à bosses est pour demain ! Les scientifiques ont longtemps supposé que l'incroyable agilité des baleines à bosse devait beaucoup aux "excroissances" qui se trouvent sur les bords de leurs nageoires principales. A partir de 2004, des chercheurs de l'Université de Harvard ont commencé à le démontrer à travers un modèle mathématique permettant d'expliquer les caractéristiques hydrodynamiques de ces excroissances. Ces recherches ont donné lieu à publications (ICI) dans la Physical Review Letters puis dans la revue Nature puis, hier, dans la revue du M.I.T. Technology Review (ICI).Après avoir été validé, entre autres par la U.S. Naval Academy, ce modèle biomimétique marin n'a pas tardé à trouver des applications pour augmenter les performances des pales des turbines d'éoliennes, des turbines hydroliennes, mais aussi des ventilateurs et aérateurs et même des ailes d'avions. La compagnie canadienne, WhalePower, de Toronto, est en ce moment même la première à être passer de la théorie a la pratique. Whale Power est train de tester ce modèle au Wind Energy Institute of Canada , sur une pale de turbine d'éolienne. Les résultats sont probants : appliquées sur les pales d' éoliennes, ces excroissances appelées " tubercules ", réduisent effectivement le bruit, accroissent la stabilité et permettent de capturer plus d'énergie à partir du vent. Selon Stephen Dewar, directeur de Recherche et Développement chez WhalePower : " La technologie des tubercules a permis à une éolienne d'affronter un ouragan et de survivre à une tempête de neige et de glace ". Donnant corps aux conclusions des chercheurs de Harvard, WhalePower s'est appliqué à démontrer, par ailleurs, que des aérateurs industriels de bâtiment et des ventilateurs équipés de double pales à tubercules accroissaient leur efficacité de 20%. Un pourcentage suffisamment significatif pour convaincre le plus grand fabricant canadien d'adopter cette technologie sur son prochain modèle de ventilateur, moins bruyant et plus productif, dont la commercialisation se fera fin avril 2008. Les chercheurs de Harvard, quant à eux, prévoit une généralisation future de cette technologie à tout ce qui porte une pale ou qui ressemble à une aile, "l' effet tubercules" accroissant les performances des hélices dans n'importe quel milieu : air, eau, vapeur ou huile. Certains ont comparé ces performances à celles que les générateurs de vortex sont capables de produire depuis leur invention en 1832 par Michael Faraday, soit il y a un peu plus de 150 ans. Nous sommes loin des millions d'années d'expérience enregistrés par les baleines à bosse dans le domaine de l'hydrodynamique. Il parait donc plutôt intelligent de s'en inspirer aujourd'hui. Les grands cétacés restent une des sources d'inspiration biomimétique marine les plus prolifiques, comme l'ont déjà démontré les applications tirées des mouvements des nageoires de requins appliqués aux [[Hydroliennes]] sous-marines.
 
-
Article : Francis Rousseau
 
-
* Le biomimétisme investit un nouveau champ d'application étonnant; après les combinaisons de natation imitant la peau de requin et tous les traitements hydrophobes/autonettoyant
+
* Les pales '''d'éoliennes''' inspirées des '''nageoires de baleines''', dont les irrégularités réduisent les turbulences. Idem pour les hydroliennes, qui produisent de l’électricité avec les courants sous-marins. L’approche classique fonctionne avec des hélices. Mais les Australiens ont inventé un système inspiré de la queue de requin, qui a fait ses preuves, depuis 200 millions d’années, pour ne pas être « en turbulence », mais uniquement « en flux laminaire ».
 +
TORONTO (Canada) 07/03/2008 - L'avènement des éoliennes à bosses est pour demain ! Les scientifiques ont longtemps supposé que l'incroyable agilité des baleines à bosse devait beaucoup aux "excroissances" qui se trouvent sur les bords de leurs nageoires principales. A partir de 2004, des chercheurs de l'Université de Harvard ont commencé à le démontrer à travers un modèle mathématique permettant d'expliquer les caractéristiques hydrodynamiques de ces excroissances. Ces recherches ont donné lieu à publications (ICI) dans la Physical Review Letters puis dans la revue Nature puis, hier, dans la revue du M.I.T. Technology Review (ICI).Après avoir été validé, entre autres par la U.S. Naval Academy, ce modèle biomimétique marin n'a pas tardé à trouver des applications pour augmenter les performances des pales des turbines d'éoliennes, des turbines hydroliennes, mais aussi des ventilateurs et aérateurs et même des ailes d'avions. La compagnie canadienne, WhalePower, de Toronto, est en ce moment même la première à être passer de la théorie a la pratique. Whale Power est train de tester ce modèle au Wind Energy Institute of Canada , sur une pale de turbine d'éolienne. Les résultats sont probants : appliquées sur les pales d' éoliennes, ces excroissances appelées " tubercules ", réduisent effectivement le bruit, accroissent la stabilité et permettent de capturer plus d'énergie à partir du vent. Selon Stephen Dewar, directeur de Recherche et Développement chez WhalePower : " La technologie des tubercules a permis à une éolienne d'affronter un ouragan et de survivre à une tempête de neige et de glace ". Donnant corps aux conclusions des chercheurs de Harvard, WhalePower s'est appliqué à démontrer, par ailleurs, que des aérateurs industriels de bâtiment et des ventilateurs équipés de double pales à tubercules accroissaient leur efficacité de 20%. Un pourcentage suffisamment significatif pour convaincre le plus grand fabricant canadien d'adopter cette technologie sur son prochain modèle de ventilateur, moins bruyant et plus productif, dont la commercialisation se fera fin avril 2008. Les chercheurs de Harvard, quant à eux, prévoit une généralisation future de cette technologie à tout ce qui porte une pale ou qui ressemble à une aile, "l' effet tubercules" accroissant les performances des hélices dans n'importe quel milieu : air, eau, vapeur ou huile. Certains ont comparé ces performances à celles que les générateurs de vortex sont capables de produire depuis leur invention en 1832 par Michael Faraday, soit il y a un peu plus de 150 ans. Nous sommes loin des millions d'années d'expérience enregistrés par les baleines à bosse dans le domaine de l'hydrodynamique. Il parait donc plutôt intelligent de s'en inspirer aujourd'hui. Les grands cétacés restent une des sources d'inspiration biomimétique marine les plus prolifiques, comme l'ont déjà démontré les applications tirées des mouvements des nageoires de requins appliqués aux [[Hydroliennes]] sous-marines. Article : Francis Rousseau
-
<H3> Exemples de biomimétisme</H3>
+
 
 +
 
 +
<H3> Exemples de biomimétisme terrestre</H3>
* Morning glory" désigne une grande famille de fleurs qu'on connaît aussi sous le nom de "belles de jour" (Ipomées).
* Morning glory" désigne une grande famille de fleurs qu'on connaît aussi sous le nom de "belles de jour" (Ipomées).
-
* Un verre autonettoyant inspiré de la surface hydrophobe des feuilles du Nymphéa,
+
* Un verre autonettoyant inspiré de la surface hydrophobe des''' feuilles du Nymphéa''',
-
* Des filets capteurs de rosée, pour lutter contre la soif, inspirés par le scarabée du Namib Stenocara : Ce scarabée du désert de Namibie, appelé "Stenocara" est capable de survivre en collectant l'eau du brouillard matinal grâce à sa carapace bosselé
+
* Des '''filets capteurs de rosée''', pour lutter contre la soif, inspirés par le scarabée du Namib Stenocara. Ce '''scarabée du désert de Namibie''', appelé "Stenocara" est capable de survivre en collectant l'eau du brouillard matinal grâce à sa carapace bosselé
-
* Une nouvelle méthode pour conserver les vaccins à température ambiante, inspirée par la plante « résurrection » Myrothamnus flabellifolia,
 
-
* Des immeubles qui imitent la climatisation passive des termitières,
+
* Une nouvelle méthode pour conserver les '''vaccins''' à température ambiante, inspirée par la plante « résurrection » Myrothamnus flabellifolia,
-
<H3> Biomimétisme intelligent : l'exemple des fourmis </H3>
 
-
* chez certaines espèces, une fourmi qui ne peut récupérer seule une proie recrute parfois des congénères pour l’aider: pendant quelques minutes, les fourmis changent de positions et d’alignements autour de l’objet, jusqu’à ce qu’elles soient capables de transporter la proie vers le nid.
+
* Un maillot de bain sec dès votre sortie de l'eau, et qui pourtant garde le toucher du coton.
-
Ronald Kube et Hong Zhang, de l’Université d’Alberta, ont reproduit ce comportement avec des robots mécaniques. Ces derniers devaient pousser une boîte vers un emplacement donné. La boîte ne pouvait être poussée par un seul robot, et de surcroit, ceux-ci étaient dotés d’instructions simples telles que : trouver la boîte, établir un contact avec elle, se positionner de manière à ce que la boîte se trouver entre le robot et le but , puis pousser la boîte en direction du but.
+
* Aux États-Unis à l'Université Northwestern (Illinois): Le '''Geckel''' source d'inspiration pour un '''adhésif''' révolutionnaire.
-
Malgré la simplicité des programmes, la similitude entre le comportement des robots et celui d’une colonie de fourmis est frappant : les robots se déplacent d’abord au hasard, à la recherche de la boîte. Puis, quand ils l’ont localisée, s’ils sont en nombre suffisant, ils la poussent. Lorsque la boîte reste immobile, les robots changent leurs positions et leurs alignements. Ils se repositionnent en permanence lorsqu’ils perdent le contact avec la boîte, quand ils se bloquent mutuellement ou lorsque la boîte tourne. Enfin, malgré leurs capacités limitées, les robots amènent la boîte au but.
+
* Le''' riz gluant''' : Le riz gluant fait des miracles.. Après avoir analysé le mortier utilisé pour les briques de la Grande Muraille de Chine, des scientifiques chinois ont fait une découverte pour le moins originale
-
Source : Pour la Science - Eric Bonabeau et Guy Théraulaz
 
 +
Architecture :
-
<H3> Exemples d'utilisation industrielle du biomimétisme</H3>
+
* sept 11 : Pour habiller la façade du centre hospitalier Henri-Duffaut d'Avignon, l'Agence Gilles Bouchez a choisi d'employer des panneaux de béton préfabriqués, grâce à la réalisation de matrices élastomères
-
* "Certains se penchent sur la façon dont la nature se crée, fonctionne, se régénère, se transforme, en bref sur ce qui fait que les organismes ressemblent à des produits parfaitement achevés, fruit d’une évolution dont on pourrait tirer des enseignements. L’idée n’est pas nouvelle : de tout temps les hommes ont imité la nature pour créer des machines, se soigner, ou bien inspirer l’organisation de leurs sociétés.
+
* Des '''immeubles''' qui imitent la climatisation passive des '''termitières''',
-
* La dureté des problèmes économiques actuels, avec l’[[Epuisement des ressources]] et les atteintes portées au fonctionnement même de l’environnement de la planète, justifierait maintenant d’utiliser davantage des recettes visant à réhabiliter le vivant, à introduire ses fonctionnalités dans les modèles de développement. "
+
<H3> Biomimétisme intelligent : l'exemple des fourmis </H3>
 +
* Chez certaines espèces, une fourmi qui ne peut récupérer seule une proie recrute parfois des congénères pour l’aider: pendant quelques minutes, les fourmis changent de positions et d’alignements autour de l’objet, jusqu’à ce qu’elles soient capables de transporter la proie vers le nid.
-
La conférence répondra finalement à cette question : Pour sauver la nature, faut-il l’imiter ?
+
Ronald Kube et Hong Zhang, de l’Université d’Alberta, ont reproduit ce comportement avec des robots mécaniques. Ces derniers devaient pousser une boîte vers un emplacement donné. La boîte ne pouvait être poussée par un seul robot, et de surcroit, ceux-ci étaient dotés d’instructions simples telles que : trouver la boîte, établir un contact avec elle, se positionner de manière à ce que la boîte se trouver entre le robot et le but , puis pousser la boîte en direction du but.
-
* Un maillot de bain sec dès votre sortie de l'eau, et qui pourtant garde le toucher du coton.
+
Malgré la simplicité des programmes, la similitude entre le comportement des robots et celui d’une colonie de fourmis est frappant : les robots se déplacent d’abord au hasard, à la recherche de la boîte. Puis, quand ils l’ont localisée, s’ils sont en nombre suffisant, ils la poussent. Lorsque la boîte reste immobile, les robots changent leurs positions et leurs alignements. Ils se repositionnent en permanence lorsqu’ils perdent le contact avec la boîte, quand ils se bloquent mutuellement ou lorsque la boîte tourne. Enfin, malgré leurs capacités limitées, les robots amènent la boîte au but. (Source : Pour la Science - Eric Bonabeau et Guy Théraulaz)
-
* Aix États-Unis à l'Université Northwestern (Illinois): Le Geckel, un adhésif révolutionnaire.
 
-
* Le riz gluant : Le riz gluant fait des miracles.. Après avoir analysé le mortier utilisé pour les briques de la Grande Muraille de Chine, des scientifiques chinois ont fait une découverte pour le moins originale
+
<H3> Exemples d'utilisation industrielle du biomimétisme</H3>
 +
 
 +
* Certains se penchent sur la façon dont la nature se crée, fonctionne, se régénère, se transforme, en bref sur ce qui fait que les organismes ressemblent à des produits parfaitement achevés, fruit d’une évolution dont on pourrait tirer des enseignements. L’idée n’est pas nouvelle : de tout temps les hommes ont imité la nature pour créer des machines, se soigner, ou bien inspirer l’organisation de leurs sociétés.
 +
 
 +
* La dureté des problèmes économiques actuels, avec l’[[Epuisement des ressources]] et les atteintes portées au fonctionnement même de l’environnement de la planète, justifierait maintenant d’utiliser davantage des recettes visant à réhabiliter le vivant, à introduire ses fonctionnalités dans les modèles de développement. "
 +
 
 +
 
 +
<H4> Pour sauver la nature, faut-il l’imiter ?</H4>
-
* sept 11 : Pour habiller la façade du centre hospitalier Henri-Duffaut d'Avignon, l'Agence Gilles Bouchez a choisi d'employer des panneaux de béton préfabriqués, grâce à la réalisation de matrices élastomères
 

Version du 23 mars 2012 à 11:15

Acclimatation
Acclimatation


Sommaire

Le biomimétisme

Le biomimétisme est une discipline révolutionnaire. Le biomimétisme investit toujours de nouveaux champs d'application étonnants.

Le biomimétisme est une approche scientifique révolutionnaire qui analyse les meilleures idées de la nature — depuis les filaments collants de la moule, les coques en « verre » de certaines algues unicellulaires, l'efficacité énergétique de la photosynthèse, la solidité du corail, la résistance des fils de soie de l'araignée — pour les adapter au service de l'homme.


Exemples de biomimétisme


  • Un revêtement antibactérien, mais non toxiques, simulant la peau de requin développé par la société américaine Sharklet
  • Saint Gobain met au point un revêtement de verre inspiré de la feuille de lotus, verre nanostructuré qui ne mouille pas mais assez solide pour faire un pare-brise
  • Les coques des diatomées ont inspiré les microsphères de verre encapsulant des molécules thérapeuthiques. Les diatomées ont appris à Arkema à reproduire à température ambiante la réaction de polymérisation à l'origine de la frustule, qui est la coque protectrice et transparente des diatomées qui se fabrique à température ambiante.
  • Les fabricants de colle s'inspirent de la capacité de la moule à synthétiser des filaments collants dans l'eau de mer. L'objectif est d'arriver à fabriquer des colles fonctionnant en milieu humide et qui donc servirait en médecine.
  • La fabrication du corail qui synthétise du carbonate de calcium, magnésium et carbonate de l'eau de mer en utilisant les ions présents dans l'eau de mer pour faire un cristal carboné et dont le squelette résiste de 12 à 80 megapascals pendant jusque 800 ans, inspire l'industrie du béton. pour élaborer un béton résistant à des pressions de 60 megapascals pendant une centaine d'année. L'industrie du béton 'Calera en Californie) émet 5 à 10 % du CO2 anthropique.
  • Les fabricants de peau artificielle s'inspire de la similitude de comportement entre la membrane protectrice des algues et notre peau, entre leur mode de vie et le nôtre. Cette similitude permet une assimilation parfaite des actifs marins,de trouver des solutions efficaces aux principaux problèmes esthétique (déshydratation, agressions extérieures, excès de graisses, perte d’élasticité…)
  • La peau de requin : après les combinaisons de natation imitant la peau de requin, on met au point des surfaces artificielles aux capacités hydrophobes et autonettoyantes.

Les algues :

  • De très nombreux secteurs industriels ne pourraient se passer des phycocolloïdes ou hydrocolloïdes, des extraits d’algues au pouvoir épaississant, gélifiant et stabilisant irremplaçable. Capable de retenir jusqu'à 140 fois son propre volume d'eau, l'acide alginique, tiré d'algues brunes, est indispensable à l'industrie textile et alimentaire. Le pouvoir gélifiant des agars, issus d'algues rouges, est mis à profit dans toutes sortes de préparations industrielles telles que confiseries et sauces. Quant aux carraghénanes, eux aussi tirés d'algues rouges, leur principal débouché est la fabrication de desserts lactés.
  • Exemple avec Phytomer et les algues : la Laminaria digitata est une algue brune composée de longues lanières similaires à des doigts d'où son nom « digitata ». Elle mesure 1 m à 1 m 50, mais sa taille peut atteindre 4 m. Elle se développe en Atlantique nord, et sur certaines côtes africaines. Les scientifiques PHYTOMER ont découvert que cette algue possède une enveloppe à la composition proche de celle de notre épiderme. Elle est constituée d'un polysaccharide (sucre marin), d'acides aminés, de minéraux et d'oligo-éléments, constituants essentiels du NMF (Natural Moisturizing Factors).

En suivant le principe du biomimétisme marin, les scientifiques PHYTOMER utilisent des extraits d'enveloppe algale de Laminaria digitata, baptisés Phéohydrane. Ils permettent de restructurer le film hydrolipidique et d'améliorer la fixation de l'eau dans l'épiderme. Extrait de cyanophycée (micro-algue bleue) possède un système de protection face au vieillissement identique à celui de la peau (Biomimétisme marin)

  • Les blindages militaires en céramique en carbure de silicium sont inspirés des mollusques nacriers dont les coquilles, formées à température et pression, ambiantes, ont une structure en couches superposées qui les rend 1000 fois plus résistant que son constistuant principal, le carbonate de calcium, assez fragile. Les nacres des coquilles sont donc constituées en briques et sous-briques répartis en couches séparées par un ciment organique, et dans une organisation globale quasi fractale très complexe.
  • Autre exemple de biomimétisme pour l'armée : dans les profondeurs de l'océan Indien, un escargot a imaginé une parade pour se protéger des prédateurs.
  • Les architectes et les éponges : Avec ses 300 mètres, la Pearl River Tower actuellement en construction en Chine deviendra peut-être le premier gratte-ciel produisant plus d’énergie qu’il n’en consomme. Après avoir étudié la manière dont les éponges absorbent au mieux l’énergie disponible dans leur environnement au lieu de la renvoyer, Adrian Smith du cabinet géant S.O.M. de Chicago a intégré dans la tour non seulement des collecteurs d’eau de pluie et des capteurs solaires, mais également des turbines éoliennes placées au milieu de la façade.
  • L'ours polaire : la fourrure de l’ours polaire et sa capacité à réguler les échanges de chaleur se retrouvent dans le Singapore Arts Centre. Sa surface, réalisée par les ingénieurs d’Atelier One, est recouverte de losanges en aluminium qui jouent le rôle des poils de la fourrure. Leur orientation est contrôlée par des capteurs de lumière photoélectriques. Par mauvais temps, les losanges s’ouvrent pour laisser passer la lumière directe du soleil et chauffer le bâtiment. En cas d’ensoleillement, les losanges se referment afin de réduire le rayonnement solaire direct tout en laissant passer suffisamment de lumière indirecte, qui arrive à l’intérieur en se réfléchissant sur la surface en aluminium des losanges. Le résultat est un étonnant bâtiment à la forme arrondie qui ressemble davantage à la carapace du tatou qu’à un ours polaire.


  • Les pales d'éoliennes inspirées des nageoires de baleines, dont les irrégularités réduisent les turbulences. Idem pour les hydroliennes, qui produisent de l’électricité avec les courants sous-marins. L’approche classique fonctionne avec des hélices. Mais les Australiens ont inventé un système inspiré de la queue de requin, qui a fait ses preuves, depuis 200 millions d’années, pour ne pas être « en turbulence », mais uniquement « en flux laminaire ».

TORONTO (Canada) 07/03/2008 - L'avènement des éoliennes à bosses est pour demain ! Les scientifiques ont longtemps supposé que l'incroyable agilité des baleines à bosse devait beaucoup aux "excroissances" qui se trouvent sur les bords de leurs nageoires principales. A partir de 2004, des chercheurs de l'Université de Harvard ont commencé à le démontrer à travers un modèle mathématique permettant d'expliquer les caractéristiques hydrodynamiques de ces excroissances. Ces recherches ont donné lieu à publications (ICI) dans la Physical Review Letters puis dans la revue Nature puis, hier, dans la revue du M.I.T. Technology Review (ICI).Après avoir été validé, entre autres par la U.S. Naval Academy, ce modèle biomimétique marin n'a pas tardé à trouver des applications pour augmenter les performances des pales des turbines d'éoliennes, des turbines hydroliennes, mais aussi des ventilateurs et aérateurs et même des ailes d'avions. La compagnie canadienne, WhalePower, de Toronto, est en ce moment même la première à être passer de la théorie a la pratique. Whale Power est train de tester ce modèle au Wind Energy Institute of Canada , sur une pale de turbine d'éolienne. Les résultats sont probants : appliquées sur les pales d' éoliennes, ces excroissances appelées " tubercules ", réduisent effectivement le bruit, accroissent la stabilité et permettent de capturer plus d'énergie à partir du vent. Selon Stephen Dewar, directeur de Recherche et Développement chez WhalePower : " La technologie des tubercules a permis à une éolienne d'affronter un ouragan et de survivre à une tempête de neige et de glace ". Donnant corps aux conclusions des chercheurs de Harvard, WhalePower s'est appliqué à démontrer, par ailleurs, que des aérateurs industriels de bâtiment et des ventilateurs équipés de double pales à tubercules accroissaient leur efficacité de 20%. Un pourcentage suffisamment significatif pour convaincre le plus grand fabricant canadien d'adopter cette technologie sur son prochain modèle de ventilateur, moins bruyant et plus productif, dont la commercialisation se fera fin avril 2008. Les chercheurs de Harvard, quant à eux, prévoit une généralisation future de cette technologie à tout ce qui porte une pale ou qui ressemble à une aile, "l' effet tubercules" accroissant les performances des hélices dans n'importe quel milieu : air, eau, vapeur ou huile. Certains ont comparé ces performances à celles que les générateurs de vortex sont capables de produire depuis leur invention en 1832 par Michael Faraday, soit il y a un peu plus de 150 ans. Nous sommes loin des millions d'années d'expérience enregistrés par les baleines à bosse dans le domaine de l'hydrodynamique. Il parait donc plutôt intelligent de s'en inspirer aujourd'hui. Les grands cétacés restent une des sources d'inspiration biomimétique marine les plus prolifiques, comme l'ont déjà démontré les applications tirées des mouvements des nageoires de requins appliqués aux Hydroliennes sous-marines. Article : Francis Rousseau


Exemples de biomimétisme terrestre

  • Morning glory" désigne une grande famille de fleurs qu'on connaît aussi sous le nom de "belles de jour" (Ipomées).
  • Un verre autonettoyant inspiré de la surface hydrophobe des feuilles du Nymphéa,
  • Des filets capteurs de rosée, pour lutter contre la soif, inspirés par le scarabée du Namib Stenocara. Ce scarabée du désert de Namibie, appelé "Stenocara" est capable de survivre en collectant l'eau du brouillard matinal grâce à sa carapace bosselé


  • Une nouvelle méthode pour conserver les vaccins à température ambiante, inspirée par la plante « résurrection » Myrothamnus flabellifolia,


  • Un maillot de bain sec dès votre sortie de l'eau, et qui pourtant garde le toucher du coton.
  • Aux États-Unis à l'Université Northwestern (Illinois): Le Geckel source d'inspiration pour un adhésif révolutionnaire.
  • Le riz gluant : Le riz gluant fait des miracles.. Après avoir analysé le mortier utilisé pour les briques de la Grande Muraille de Chine, des scientifiques chinois ont fait une découverte pour le moins originale


Architecture :

  • sept 11 : Pour habiller la façade du centre hospitalier Henri-Duffaut d'Avignon, l'Agence Gilles Bouchez a choisi d'employer des panneaux de béton préfabriqués, grâce à la réalisation de matrices élastomères
  • Des immeubles qui imitent la climatisation passive des termitières,

Biomimétisme intelligent : l'exemple des fourmis

  • Chez certaines espèces, une fourmi qui ne peut récupérer seule une proie recrute parfois des congénères pour l’aider: pendant quelques minutes, les fourmis changent de positions et d’alignements autour de l’objet, jusqu’à ce qu’elles soient capables de transporter la proie vers le nid.

Ronald Kube et Hong Zhang, de l’Université d’Alberta, ont reproduit ce comportement avec des robots mécaniques. Ces derniers devaient pousser une boîte vers un emplacement donné. La boîte ne pouvait être poussée par un seul robot, et de surcroit, ceux-ci étaient dotés d’instructions simples telles que : trouver la boîte, établir un contact avec elle, se positionner de manière à ce que la boîte se trouver entre le robot et le but , puis pousser la boîte en direction du but.

Malgré la simplicité des programmes, la similitude entre le comportement des robots et celui d’une colonie de fourmis est frappant : les robots se déplacent d’abord au hasard, à la recherche de la boîte. Puis, quand ils l’ont localisée, s’ils sont en nombre suffisant, ils la poussent. Lorsque la boîte reste immobile, les robots changent leurs positions et leurs alignements. Ils se repositionnent en permanence lorsqu’ils perdent le contact avec la boîte, quand ils se bloquent mutuellement ou lorsque la boîte tourne. Enfin, malgré leurs capacités limitées, les robots amènent la boîte au but. (Source : Pour la Science - Eric Bonabeau et Guy Théraulaz)


Exemples d'utilisation industrielle du biomimétisme

  • Certains se penchent sur la façon dont la nature se crée, fonctionne, se régénère, se transforme, en bref sur ce qui fait que les organismes ressemblent à des produits parfaitement achevés, fruit d’une évolution dont on pourrait tirer des enseignements. L’idée n’est pas nouvelle : de tout temps les hommes ont imité la nature pour créer des machines, se soigner, ou bien inspirer l’organisation de leurs sociétés.
  • La dureté des problèmes économiques actuels, avec l’Epuisement des ressources et les atteintes portées au fonctionnement même de l’environnement de la planète, justifierait maintenant d’utiliser davantage des recettes visant à réhabiliter le vivant, à introduire ses fonctionnalités dans les modèles de développement. "


Pour sauver la nature, faut-il l’imiter ?



_

Un ouvrage sur le biomimétisme

« Biomimétisme - Quand la nature inspire des innovations durables » de Janine Benyus est paru en librairie le 4 mai 2011 dans la collection Initial(e)s DD Dans ce livre fondateur, Janine M. Benyus nous fait découvrir des chercheurs pionniers dans le développement d'applications efficaces et respectueuses de l'environnement.

L'auteur Née en 1958 aux États-Unis, Janine M. Benyus est une biologiste américaine, diplômée en gestion des ressources naturelles. Elle a développé une théorie scientifique, le biomimétisme, qu'elle a rendu populaire grâce au succès de son livre Biomimicry, Innovation Inspired by Nature. À la tête d'un bureau de consultants en innovation, elle est aujourd'hui sollicitée par des entreprises comme General Electric, Hewlett Packard, Nike, etc. Janine M. Benyus vit à Stevensville, dans le Montana.


sur le biomimétisme

  • Biomimétisme

Vous êtes spécialiste d'un sujet ? Vous avez une info ? Complétez ou créez un article sur encycloÉcolo.